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Bacterial resistance to antibiotics is a serious threat to public
health, with ”superbugs” such as MRSA (methicillin-resistant
Staphylococcus aureus) responsible for nearly as many deaths
in the U.S. as AIDS, viral hepatitis, and tuberculosis combined.1

More than half of bacterial strains isolated from patients in
American intensive care units are resistant to at least one
antibiotic,2 and globally >80% of isolates are resistant.3 In 2004,
the Infectious Disease Society of America (IDSA) issued its
oft-cited “Bad Bugs, No Drugs” report, highlighting an emerging
public health crisis stemming from a decline in the develop-
ment of new antibiotics while resistance increasingly renders
existing antibiotics ineffective.4 In 2009 IDSA published an
update, observing that the situation had grown still worse.5

Of particular concern is the increased occurrence of resistant
infections due to the Gram-negative pathogens Acinetobacter
baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae, both
in the U.S. and globally. Like MRSA, resistant Gram-negative
infections result in longer hospital stays, greater morbidity, and
significantly higher mortality rates.1,6 Strains resistant to more
than one class of antibiotics are now emerging, culminating in
pan-resistant Gram-negative strains causing serious and
complicated infections for which no treatment is available.7−9

Tragically, Acinetobacter and Pseudomonas infections have
emerged particularly among immunocompromised patient
populations, where they threaten the hard-fought gains made
in areas such as HIV and cancer chemotherapy.
Resistance mechanisms specific to each class of antibiotics,

for example, deactivating enzymes such as β-lactamases and
aminoglycoside-modifying enzymes, have been described, but
a mechanism common to all is that of reduced cell entry,
by either reduced diffusion into the cell or efflux from it.10

Increased expression of efflux pumps is also often involved in
multidrug resistance, and in some cases strains have acquired
resistance via new efflux pumps obtained through horizontal
gene transfer.11,12 Unlike Gram-positive bacteria, Gram-
negative species have highly promiscuous efflux systems and
pump a broad range of xenobiotics. Gram-negative pathogens
are further protected by an outer cell membrane, which signi-
ficantly limits the influx of solutes. This second membrane is
asymmetric, with a phospholipid inner leaflet and a lip-
opolysaccharide outer leaflet punctuated by water-filled porin
channels that allow small hydrophilic substrates required for
bacterial growth to reach specific uptake systems in the inner
membrane. Even in the absence of increased efflux pump
expression, basal levels of pump activity are major contributors
to primary resistance and largely responsible for the reduced
antibiotic susceptibility observed, for instance, in P. aeruginosa

relative to Hemophilis inf luenzae. Thus, primary resistance due
to efflux plagues early stage drug discovery.13−15

AcrB is part of the most prevalent efflux transporter among
Gram-negative species. It resides in the cytoplasmic membrane
and complexes with AcrA and the TolC outer-membrane
channel to pump substrates from the periplasmic space to the
exterior of the cell16 (Figure 1). Substrates bind in the AcrB
subunit and are extruded through conformational changes
driven by a proton gradient maintained across the cytoplasmic
membrane.17 AcrB has been implicated in the clinical resistance
of Escherichia coli,18,19 P. aeruginosa,20,21 and Klebsiella pneumo-
niae22 to antibiotics representing numerous classes, including
tetracyclines, aminoglycosides, (fluoro)quinolones, cephalo-
sporins, and carbapenems. It is a ubiquitous and extremely
promiscuous transporter and is, in our experience, possibly the
single most significant hurdle to achieving therapeutic levels of
antibacterials within Gram-negative cells.
Numerous investigators have noted differences in phys-

icochemical characteristics between antibiotics and other drugs.
However, the exact set of properties that make small molecules
effective against Gram-negative cells remains poorly under-
stood. Among the handful of studies seeking systematic trends
between Gram-negative activity and molecular properties, a
common theme is that bacteria (and Gram-negatives in
particular) tend to be more susceptible to hydrophilic com-
pounds.23−31 O’Shea and Moser28 come closest to a set of
guidelines for distinguishing compounds with probable Gram-
negative activity based on simple physicochemical properties
amenable to change through medicinal chemistry. They
compared a set of 147 marketed and late-stage compounds
with antibacterial activity to a background of drugs and druglike
compounds and found that those with Gram-negative activity
are profoundly more polar than other classes of drugs (as much
as 4 orders of magnitude in terms of water/octanol parti-
tioning) and that they possess a skewed distribution of
molecular weight tending toward but not exceeding 600 Da,
consistent with the limits imposed by porins.32 It followed that
antibacterial discovery programs should focus their efforts on
relatively small and polar compounds.
Interestingly, these recommendations were somewhat

inconsistent with our individual experiences within various
lead optimization efforts, in which polarity seemed detrimental
to Gram-negative activity, particularly by increasing the apparent
susceptibility of compounds to efflux. To better understand this
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discrepancy, we conducted a retrospective analysis on
antibacterial compounds from discovery programs targeting
Gram-negative pathogens at AstraZeneca. We used antimicro-
bial activities, measured as minimal inhibitory concentrations
(MICs),33 against a strain of H. inf luenzae lacking AcrB (and
thus extrusion via its major AcrABTolC efflux pump) and its
isogenic parental strain. H. inf luenzae, though not a serious
Gram-negative pathogen, is a convenient model for this study.
In contrast to E. coli and P. aeruginosa, it possesses only one
orthologue each of AcrA, AcrB, and TolC, making inactivation
of this major efflux system straightforward. In addition, the
diameter of outer membrane porins in H. inf luenzae is larger
than those from other Gram-negative species,34−36 providing
for a richer data set because a larger number and variety of
compounds are active against this species. In order to normalize
for differences in biochemical potency among compounds, our
key parameter was an efflux ratio, defined as MICparent/
MICmutant. The impact of other factors, including additional
efflux systems that might show differential activity toward
particular classes of compounds, is also minimized or canceled
altogether by using the ratio of the AcrB knockout to wild-type
MICs. Allowing for 2-fold variability in individual MIC values,
compounds that exhibited ratios of >4 were considered as
significantly effluxed via AcrB. Thus, only compounds with
activity against H. inf luenzae acrB at least two dilutions below
the maximal screening concentration could be included in the
analysis. In an attempt to exclude compounds acting through
nonspecific modes of action, we omitted compounds that
showed activity against Candida albicans at, or below, the maxi-
mal screening concentration (typically 200 μM). This resulted
in a total of 3066 compounds included in the analysis. These
compounds represent multiple programs and at least 50 dif-
ferent scaffolds, generally identified in enzyme-based HTS

campaigns against genetically validated bacterial targets. A
number of physicochemical descriptors were calculated, among
which molecular weight (MW) and fractional polar surface area
(FPSA)37 provided the most illuminating trends. FPSA was
chosen as a measure of polarity because it is normalized roughly
to overall molecular size and is thus less correlated with molec-
ular weight than total polar surface area or other hydro-
phobicity measures such as clogP. Figure 2 shows a scatter plot

of FPSA vs MW for all compounds in the analysis, color-coded
by efflux ratio (red represents compounds with an efflux ratio of

Figure 1. Cartoon representation of the Gram-negative cell envelope highlighting some of the many barriers to small molecule penetration. The
lipopolysaccharide (LPS) chains emanating from the outer membrane present an initial and effective barrier to all but generally polar compounds
small enough to pass through porin proteins.32 In the periplasm, compounds too polar to diffuse rapidly through the cytoplasmic inner membrane
are effluxed primarily by RND-type pumps (AcrAB/TolC system or equivalent),16 and compounds in the cytoplasm are susceptible to efflux by a
multitude of other pumps (e.g., multidrug resistant (MDR) pumps). Uptake of nutrients is facilitated by specific transporters in the inner and outer
membranes. In addition to the more generalized mechanisms represented here, there are multiple species-specific and compound-specific
mechanisms of acquired and innate resistance. Protein structures used in this figure were obtained from the Orientations of Proteins in Membranes
database.49

Figure 2. Scatter plot showing the relationship between fractional
polar surface area (FPSA) and molecular weight for all compounds
analyzed. Red represents ratios of >4. Green represents ratios of ≤4,
and blue represents compounds with efflux ratios of ≤4 that possess
polar functional groups implicated in circumventing efflux (see text
and Figure 5). Marker shape represents chemical class.
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>4; green and blue represent compounds with efflux ratio of
≤4). The majority of compounds, which are significantly
effluxed, are distributed around a mean MW of 500 and FPSA
of 25% (or a clogP of 2 for the compounds in this set). Com-
pounds with low efflux ratios are significantly smaller, with a
mean MW of 400.
The monotonic relationship between efflux ratio and MW

can be seen more clearly in Figure 3. As size increases, so does

the fraction of compounds with efflux ratios above 4. It is
possible that compounds exhibit size-dependent affinity for
AcrB and that larger compounds have greater rates of efflux. It
is also possible that the larger compounds penetrate more
slowly through the outer membrane and suffer from lower
influx rates. A weakness of the efflux ratio is the inability to
distinguish between these possibilities. However, the observa-
tion that nearly all compounds with efflux ratios less than 4
have molecular weights below 600 Da is consistent with the
notion of size exclusion by porins32 and hints at a model in
which the rate of influx dominates the efflux ratio.
The trend with polar surface area is more complex. Figure 2

shows that compounds with low efflux ratios are distributed
over a wider range of FPSA than those that are significantly
effluxed. Strikingly, the most polar compounds in this group
belong to established classes of antibiotics with Gram-negative
activity and incorporate functional groups implicated in
circumventing efflux. What we refer to as these “privileged”
compounds are represented in blue in Figures 2−4. Figure 4
more clearly shows the relationship between efflux ratio and
FPSA. Initially, the efflux ratio increases with the relative
amount of polar surface area, consistent with our anecdotal
experiences in proprietary chemical series. However, above
about 25% FPSA, efflux begins to drop until the point where
compounds with about equal amounts of polar and nonpolar
surface area exhibit no efflux at all.
“Privilege” among compounds with low efflux ratios seems to

be coupled more strongly to the presence of particular
functional groups than it is with overall physical properties.
The prevalence of discovery programs targeting orally available
medications complicates the analysis, as there are many fewer

small and polar compounds than there are in the moderately
hydrophobic, 500 MW range. However, privileged compounds
do appear relatively uniformly over much of the physical
property space defined in Figure 2, demonstrating that a wide
range of physical properties can result in low efflux ratios, so
long as the presence of key functional groups is maintained.
Notably, although the proprietary nature of the compounds in
the analysis precludes a detailed breakdown, it can be seen that
privilege spans numerous chemical classes, as shown by the
different marker shapes in Figure 2.
Some examples of privileged compounds and the functional

groups they display are shown in Figure 5. They exploit the
following mechanisms:
(1) Periplasmic target. Compounds in this group (primarily

β-lactams) must cross only the outer membrane to exert their
mode of action for which the conventional rules of being small
and polar seem to prevail.
(2) Irreversible inhibition. The oxaboroles, β-lactams (for

example, carbapenems and cephalosporins), and hydroxa-
mates38 bind irreversibly (or with very low off-rates) to the
target, sequestering them from efflux and reducing their need
for high permeation rates.
(3) Self-promoted uptake. Compounds in this group, such as

the aminoglycosides, exhibit basic functionalities that are
thought to facilitate permeation through association with the
outer membrane of Gram-negative cells.39 It is thought that the
basic centers of these compounds displace divalent metal
cations bound among the anionic lipopolysaccharide chains of
the outer leaflet. This results in destabilization of the LPS
framework, effectively permeabilizing the outer membrane.
(4) Ion trapping. Compounds with weakly acidic functional

groups (the β-keto acids in Figure 5b exhibit pKa around 6.240)
take advantage of the pH gradient across the Gram-negative
inner membrane41 and ionize more fully in the cytosol than in
the medium. Thus, the net permeability of these compounds
into the cell exceeds the net rate out, effectively “trapping”
them in the cytosol.42,43

Of course, in practice compounds can exploit more than one
of these avenues. For example, the β-lactams combine action in

Figure 3. Normalized distribution of efflux ratios according to
molecular weight, color-coded as in Figure 2. Bar height is shown
normalized by the number of compounds in each bin so that 100% of
the compounds in the 100−225 molecular weight range exhibit low
efflux ratios, whereas 100% of the compounds in the 725−850 range
are significantly effluxed.

Figure 4. Normalized distribution of efflux ratios according to FPSA,
color-coded as in Figure 2. Efflux exhibits a parabolic dependence on
polarity, where moderately polar compounds (about 25% FPSA) show
the highest propensity for efflux. Interestingly, nearly all compounds
with low efflux ratios exhibit polar functional groups implicated in
mechanisms that enhance potency and/or permeability, effectively
circumventing efflux (see text and Figure 5).
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the periplasm with effectively irreversible inhibition. The
fluoroquinolones are known to bind Mg2+, associated with
the outer membrane, and it has been postulated that this
enhances their permeability through self-promoted uptake,44

although this model has been disputed.45,46 It remains unclear
whether the improved permeability observed among β-keto
acids is due primarily to metal ion chelation or to ion trapping.
A further boost may come from the incorporation of basic sub-
stituents at the 7-position on many fluoroquinolones, allowing
them to exploit the self-promoted uptake pathway.
Even though the present analysis was confined to efflux

mediated by a single pump in H. inf luenzae, the fact that it
highlighted a number of compounds belonging to established

classes with Gram-negative activity suggests that its implications
may be more far-reaching. One reason to think so is that since
the efflux ratio depends on influx rate, it provides information
about the requirements for penetrating the outer membrane,
which is morphologically similar across pathogenic species of
Gram-negative bacteria targeted by drug discovery efforts.
Another reason is the very prevalence of the AcrAB/TolC
system and its homologues, which share broad but overlapping
substrate specificities.47,48 It is not unreasonable to expect simi-
larities in physical property determinants of substrate binding
affinity among these systems. Indeed, the specific examples in
Figure 5 are all noted for clinical use in other more virulent
species such as E. coli and P. aeruginosa.
One important implication for drug discovery is that

targeting specific ranges of physical properties is not enough
to guarantee antibacterial activity. Investigators should
incorporate structural motifs that exploit one or more of the
above avenues for circumventing efflux in the design and/or
selection of novel compounds. Because of the apparent
restriction on size (<600 Da), these combined observations
may imply that the most promising approach to developing
novel Gram-negative agents is to work within established classes.
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